Classification of Elastic Wave for Non-Destructive Inspections Based on Self-Organizing Map

نویسندگان

چکیده

An arrival time of an elastic wave is the important parameter to visualize locations failures and/or velocity distributions in field non-destructive testing (NDT). The detection conducted generally using automatic picking algorithms a measured time-history waveform. According algorithms, it expected that detected from low S/N signals has accuracy if are measurements. Thus, order accurately detect for NDT, classification waves required. However, based on not been extensively conducted. In this study, method self-organizing maps (SOMs) applied classify waves. SOMs relation data wherein number classes unknown. Therefore, SOM selects high and adequately validated model tests pencil lead breaks (PLBs), was confirmed successfully consisted signal. Moreover, classified were source localization noteworthy localized sources more accurate comparison with all

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Streaming Fuzzy DEA Using Self-Organizing Map

The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Lidar Waveform Classification Using Self-organizing Map

Most commercial LIDAR systems temporarily record the entire laser pulse echo signal, called full-waveform, as a function of time to extract the return pulses at data acquisition level in real-time; typically up to 4-5 returns. The new generation of airborne laser scanners, the full-waveform LiDAR systems, are not only able to digitize but can record the entire backscattered signal of each emitt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2023

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su15064846